skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Jiapeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The A* algorithm is commonly used to solve NP-hard combinatorial optimization problems. When provided with a completely informed heuristic function, A* can solve such problems in time complexity that is polynomial in the solution cost and branching factor. In light of this fact, we examine a line of recent publications that propose fitting deep neural networks to the completely informed heuristic function. We assert that these works suffer from inherent scalability limitations since --- under the assumption of NP P/poly --- such approaches result in either (a) network sizes that scale super-polynomially in the instance sizes or (b) the accuracy of the fitted deep neural networks scales inversely with the instance sizes. Complementing our theoretical claims, we provide experimental results for three representative NP-hard search problems. The results suggest that fitting deep neural networks to informed heuristic functions requires network sizes that grow quickly with the problem instance size. We conclude by suggesting that the research community should focus on scalable methods for integrating heuristic search with machine learning, as opposed to methods relying on informed heuristic estimation. 
    more » « less
  2. Tauman_Kalai, Yael (Ed.)
    A folklore conjecture in quantum computing is that the acceptance probability of a quantum query algorithm can be approximated by a classical decision tree, with only a polynomial increase in the number of queries. Motivated by this conjecture, Aaronson and Ambainis (Theory of Computing, 2014) conjectured that this should hold more generally for any bounded function computed by a low degree polynomial. In this work we prove two new results towards establishing this conjecture: first, that any such polynomial has a small fractional certificate complexity; and second, that many inputs have a small sensitive block. We show that these would imply the Aaronson and Ambainis conjecture, assuming a conjectured extension of Talagrand’s concentration inequality. On the technical side, many classical techniques used in the analysis of Boolean functions seem to fail when applied to bounded functions. Here, we develop a new technique, based on a mix of combinatorics, analysis and geometry, and which in part extends a recent technique of Knop et al. (STOC 2021) to bounded functions. 
    more » « less